Abstract

BackgroundMetabolic alterations, related to cerebral glucose metabolism, brain insulin resistance, and age-induced mitochondrial dysfunction, play an important role in Alzheimer’s disease (AD) on both the systemic and central nervous system level. To study the extent and significance of these alterations in AD, quantitative metabolomics was applied to plasma and cerebrospinal fluid (CSF) from clinically well-characterized AD patients and cognitively healthy control subjects. The observed metabolic alterations were associated with core pathological processes of AD to investigate their relation with amyloid pathology and tau-related neurodegeneration.MethodsIn a case-control study of clinical and biomarker-confirmed AD patients (n = 40) and cognitively healthy controls without cerebral AD pathology (n = 34) with paired plasma and CSF samples, we performed metabolic profiling, i.e., untargeted metabolomics and targeted quantification. Targeted quantification focused on identified deregulated pathways highlighted in the untargeted assay, i.e. the TCA cycle, and its anaplerotic pathways, as well as the neuroactive tryptophan and kynurenine pathway.ResultsConcentrations of several TCA cycle and beta-oxidation intermediates were higher in plasma of AD patients, whilst amino acid concentrations were significantly lower. Similar alterations in these energy metabolism intermediates were observed in CSF, together with higher concentrations of creatinine, which were strongly correlated with blood-brain barrier permeability. Alterations of several amino acids were associated with CSF Amyloidβ1–42. The tryptophan catabolites, kynurenic acid and quinolinic acid, showed significantly higher concentrations in CSF of AD patients, which, together with other tryptophan pathway intermediates, were correlated with either CSF Amyloidβ1–42, or tau and phosphorylated Tau-181.ConclusionsThis study revealed AD-associated systemic dysregulation of nutrient sensing and oxidation and CNS-specific alterations in the neuroactive tryptophan pathway and (phospho)creatine degradation. The specific association of amino acids and tryptophan catabolites with AD CSF biomarkers suggests a close relationship with core AD pathology.Our findings warrant validation in independent, larger cohort studies as well as further investigation of factors such as gender and APOE genotype, as well as of other groups, such as preclinical AD, to identify metabolic alterations as potential intervention targets.

Highlights

  • In Alzheimer’s disease (AD), glucose hypometabolism is considered a typical feature of the disease at clinical stages, indicating the loss of neuronal function in specific brain regions [1]

  • Cerebral glucose hypometabolism, characterized by impaired glucose uptake and utilization related to brain insulin resistance [2, 3], and progressive mitochondrial dysfunction with aging [4] have both been recently associated with AD and suggest involvement of energy metabolism alterations in AD pathophysiology

  • The two populations had a different frequency of the ApoEε4 allele, a known risk factor for AD, and a marginally significant different cerebrospinal fluid (CSF)/serum albumin ratio (Qalb), considered here as a marker of blood-brain barrier permeability [31]

Read more

Summary

Introduction

In Alzheimer’s disease (AD), glucose hypometabolism is considered a typical feature of the disease at clinical stages, indicating the loss of neuronal function in specific brain regions [1]. Cerebral glucose hypometabolism, characterized by impaired glucose uptake and utilization related to brain insulin resistance [2, 3], and progressive mitochondrial dysfunction with aging [4] have both been recently associated with AD and suggest involvement of energy metabolism alterations in AD pathophysiology. These alterations in early AD may occur both at the central nervous system (CNS) and the systemic level and play a role in clinical disease progression [5, 6]. The observed metabolic alterations were associated with core pathological processes of AD to investigate their relation with amyloid pathology and tau-related neurodegeneration

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.