Abstract

Chronic irradiation of mice with ultraviolet (UV) light produces a systemic alteration of an immunologic nature. This alteration is detectable in mice long before primary skin cancers induced by UV light begin to appear. The alteration results in the failure of UV-irradiated mice to reject highly antigenic, transplanted UV-induced tumors that are rejected by unirradiated syngeneic recipients. The immunologic aspect of this systemic alteration was demonstrated by transferring lymphoid cells from UV-irradiated mice to lethally x-irradiated recipients. These recipients were unable to resist a later challenge with a syngeneic UV-induced tumor, whereas those given lymphoid cells from normal donors were resistant to tumor growth. Parabiosis of normal mice with UV-irradiated mice, followed by tumor challenge of both parabionts with a UV-induced tumor, resulted in the growth of the challenge tumors in both WV-irradiated and unirradiated mice. Splenic lymphocytes from tumor-implanted UV-treated mice were not cytotoxic in vitro against UV-induced tumors, whereas under identical conditions cells from tumor-implanted, unirradiated mice were highly cytotoxic. Our findings suggest that repeated UV irradiation can circumvent an immunologic mechanism that might otherwise destroy nascent UV-induced primary tumors that are strongly antigenic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call