Abstract
BackgroundDefinitive treatment strategies for bisphosphonate-related osteonecrosis of the jaw (BRONJ) have not been developed. Cell-based therapy is an attractive treatment method for intractable diseases in the medical and dental fields; however, approval has been challenging in dentistry. Recently, we developed quality- and quantity (QQ)-controlled peripheral blood mononuclear cells (PBMNCs) that have anti-inflammatory and pro-angiogenesis effects. The aim of this study was to investigate the effects of QQ-controlled PBMNC transplantation on BRONJ-like lesions in mice.MethodsTo create high-prevalence BRONJ-like lesions, cyclophosphamide (CY) and zoledronate (ZA) were used with tooth extraction. Drug treatment was performed for 5 weeks. QQ-controlled PBMNC transplantation was performed immediately following tooth extraction of both maxillary first molars at 3 weeks after drug administration. Mice were euthanized at 2 weeks post-extraction. Histomorphometric and immunohistochemical analyses, microcomputed tomography assessment, and quantitative polymerase chain reaction evaluation were conducted using maxillae and long bones.ResultsZA effects on long bones were noted, regardless of CY. Severely inhibited osseous and soft tissue wound healing of tooth extraction sockets was induced by CY/ZA combination therapy, which was diagnosed as BRONJ-like lesions. QQ-controlled PBMNC transplantation reduced BRONJ-like lesions by improving soft tissue healing with increased M1 and M2 macrophages and enhanced neovascularization in the connective tissue of tooth extraction sockets. QQ-controlled PBMNC transplantation also reduced inflammation by decreasing polymorphonuclear cells and TNF-α expression in the tooth extraction sockets. Additionally, QQ-controlled PBMNC transplantation partially improved osseous healing of tooth extraction sockets. Interestingly, only 20,000 QQ-controlled PBMNCs per mouse induced these transplantation effects. QQ-controlled PBMNC transplantation did not affect the systemic microenvironment.ConclusionsOur findings suggest that transplantation of a small amount of QQ-controlled PBMNCs may become novel therapeutic or prevention strategies for BRONJ without any adverse side effects.
Highlights
Definitive treatment strategies for bisphosphonate-related osteonecrosis of the jaw (BRONJ) have not been developed
The aim of this study was to investigate the effects of quality- and quantity (QQ)-controlled Quality- and quantity-controlled peripheral blood mononuclear cell (PBMNC) transplantation on tooth extraction socket healing using previously established high-prevalence BRONJ-like lesions in mice [18, 19]
We demonstrated that systemic transplantation of QQcontrolled PBMNCs reduces BRONJ-like lesions mainly by improving soft tissue wound healing with improved production of type I collagen, enhanced blood vessel formation, suppressed inflammation, and increased M1 and M2 macrophages in the connective tissue of tooth extraction sockets
Summary
Definitive treatment strategies for bisphosphonate-related osteonecrosis of the jaw (BRONJ) have not been developed. We developed quality- and quantity (QQ)-controlled peripheral blood mononuclear cells (PBMNCs) that have anti-inflammatory and pro-angiogenesis effects. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a rare but sometimes severe adverse effect of oral and intravenous bisphosphonates. The incidence of BRONJ following tooth extraction in cancer patients receiving intravenous bisphosphonates is obviously higher when compared with that in osteoporosis patients taking oral bisphosphonates (estimates for the risk of BRONJ; 1.6–14.8% vs 0.5%, respectively) [1]. A recent systematic review has reported that most BRONJ patients (60.7%) had multiple myeloma or breast cancer [2]. These patients often receive chemotherapy with intravenous bisphosphonate administration that reduces skeletal-related events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.