Abstract

Adrenomedullin is a 52-amino acid peptide first described in a human phaeochromocytoma but since been found to be present in many tissues, including the vascular system and bone. Because of its structural similarity to amylin and calcitonin gene-related peptide, both of which have actions on bone cells, we have previously assessed the effects of adrenomedullin on the skeleton, and found that it increases osteoblast proliferation in vitro and bone formation following local injection in vivo. The present study carries this work forward by assessing the effects on bone of the systemic administration of a fragment of this peptide lacking the structural requirements for vasodilator activity. Two groups of 20 adult male mice received 20 injections of human adrenomedullin(27-52) 8.1 microg or vehicle over a 4-week period and bone histomorphometry and strength were assessed. In the tibia, adrenomedullin(27-52) produced increases in the indices of osteoblast activity, osteoid perimeter and osteoblast perimeter (P<0.05 for both using Student's t-test). Osteoclast perimeter was not affected. There was a 21% increase in cortical width and a 45% increase in trabecular bone volume in animals treated with adrenomedullin(27-52) (P<0.002 for both). Assessment of bone strength by three-point bending of the humerus showed both the maximal force and the displacement to the point of failure were increased in the animals treated with adrenomedullin(27-52) (P<0.03 for both). There was also a significant increase in the thickness of the epiphyseal growth plate. No adverse effects of the treatment were noted. It is concluded that adrenomedullin(27-52) acts as an anabolic agent on bone. These findings may be relevant to the normal regulation of bone mass and to the design of agents for the treatment of osteoporosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.