Abstract

Entity Resolution (ER) is the task of identifying different representations of the same real-world object. To achieve scalability and the desired level of quality, the typical ER pipeline includes multiple steps that may involve low-level coding and extensive human labor. We present SystemER, a tool for learning explainable ER models that reduces the human labor all throughout the stages of the ER pipeline. SystemER achieves explainability by learning rules that not only perform a given ER task but are human-comprehensible; this provides transparency into the learning process, and further enables verification and customization of the learned model by the domain experts. By leveraging a human in the loop and active learning, SystemER also ensures that a small number of labeled examples is sufficient to learn high-quality ER models. SystemER is a full-fledged tool that includes an easy to use interface, support for both flat files and semi-structured data, and scale-out capabilities by distributing computation via Apache Spark.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.