Abstract
Cadmium-free quantum dots (QDs) have attracted great attention in biological and biomedical applications due to their less content of toxic metals, but their potential toxicity investigations on molecular biology level are rarely involved. Since few studies have addressed whether InP/ZnS QDs could bind and alter the structure and function of human serum albumin (HSA), in vitro interaction between InP/ZnS QDs and HSA was systematically characterized by multispectroscopic approaches. InP/ZnS QDs could quench the intrinsic fluorescence of HSA via static mode. The binding site of InP/ZnS QDs was mainly located at subdomain IIA of HSA. Some thermodynamic parameters suggested that InP/ZnS QDs interacted with HSA mainly through electrostatic interactions. As further revealed by three–dimensional spectrometry, FT–IR spectrometry and circular dichroism technique, InP/ZnS QDs caused more global and local conformational change of HSA than CdSe/ZnS QDs, which illustrated the stronger binding interaction and higher potential toxicity of InP/ZnS QDs on biological function of HSA. Our results offer insights into the in vitro binding mechanism of InP/ZnS QDs with HSA and provide important information for possible toxicity risk of these cadmium-free QDs to human health.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.