Abstract
Meter-scale AUV mapping of 85-km of the summit and rift zones of Axial Seamount shows systematic variation in morphology of the lava flows with depth and distance from the caldera. ROV sampling reveals flow age and chemistry variations. Each rift zone has a steady downward slope of ~2° outside the caldera. In the caldera and first few km down the rift zones, flows are predominantly channelized sheet flows with collapses along the channels. Mid-rift, drained inflated hummocky flows consisting of complex mounds with tumuli and lava lakes, and narrow ridges of hummocky mounds become common. On the axis of the south rift, the first cones with craters occur 3.2 km from the caldera at 1600 m depth, and broad inflated hummocky flows emplaced through complex lava tubes first appear 6 km down-rift at 1715 m. On the north rift, similar cones and complex flows appear at 10.5 km down-rift at 1725 m depth. The historical flows exemplify this variation: on the upper south rift as channelized sheet flows in 1998 and 2011 erupted from fissures that extended 6.5 km down-rift; on the middle north rift, inflated hummocky flows up to 126 m thick erupted in 2015 from fissures 17.5 km from the caldera; and on the distal south rift, a narrow ridge of coalesced hummocks 160 m tall formed during the 2011 eruption. Older and older lavas remain exposed at greater distances from the more active summit and upper rift zones. Deep on the rift zones, stellate and steep cones with smooth talus slopes occur that did not feed expansive flows, despite being constructed of hotter, less viscous, near-primary magmas. These cones are first observed on both rift zones at 1800 m depth and 18 km from the caldera. Deeper still, emanating from both distal rift axes beginning ~30 km from the caldera, lie voluminous inflated sheet and inflated hummocky flows 30 to 135 m thick with combined area of over 150 km2. The plagioclase-phyric voluminous flows on the south rift erupted ~1250 years ago, and the aphyric ones on the north rift ~13,000 years ago. Eruption rate is the most likely cause of the flow morphology changes since estimated magma viscosity does not correlate with flow morphology. Lateral transport through long dikes would slow magma delivery unless dike widths are large. The near-primary magmas may have risen through narrow conduits from the mantle to the distal rifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.