Abstract

We present an analytical concept for generating shaped femtosecond laser pulses at the distal end of a microstructured hollow core photonic crystal fiber. The properties of the fiber are analyzed and included in the shaping procedure. A parametric pulse shaping method allows for tailoring a sequence of sub-pulses. In this method, each sub-pulse can be individually controlled by its physically intuitive parameters distance in time, energy, phase and chirps as well as the state of polarization including ellipticity, orientation, and helicity. This is demonstrated with a series of double pulses, in which a single parameter is systematically varied, and additionally with more complex example pulses. Further, we investigate the impact of mechanical distortions of the fiber on the pulse shape. The presented method could be beneficially used in endoscopic applications in life sciences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.