Abstract

In the field of metal-metal bonding, the occurrence of stable, multiple bonds between different transition metals is uncommon, and is largely unknown for different first-row metals. Adding to a recently reported iron-chromium complex, three additional M-Cr complexes have been isolated, where the iron site is systematically replaced with other first-row transition metals (Mn, Co, or Ni), while the chromium site is kept invariant. These complexes have been characterized by X-ray crystallography. The Mn-Cr complex has an ultrashort metal-metal bond distance of 1.82 Å, which is consistent with a quintuple bond. The M-Cr bond distances increases across the period from M = Mn to M = Ni, as the formal bond order decreases from 5 to 1. Theoretical calculations reveal that the M-Cr bonds become increasingly polarized across the period. We propose that these trends arise from increasing differences in the energies and/or contraction of the metals' d-orbitals (M vs Cr). The cyclic voltammograms of these heterobimetallic complexes show multiple one-electron transfer processes, from two to four redox events depending on the M-Cr pair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.