Abstract
With the expansion of the semiconductor supply chain, the use of recycled field-programmable gate arrays (FPGAs) has become a serious concern. Several methods for detecting recycled FPGAs by analyzing the ring oscillator (RO) frequencies have been proposed; however, most assume the known fresh FPGAs (KFFs) as the training data in machine-learning-based classification. In this study, we propose a novel recycled FPGA detection method based on an unsupervised anomaly detection scheme when there are few or no KFFs available. As the RO frequencies in the neighboring logic blocks on an FPGA are similar because of systematic process variation, our method compares the RO frequencies and does not require KFFs. The proposed method efficiently identifies recycled FPGAs through outlier detection using direct density ratio estimation. Experiments using Xilinx Artix-7 FPGAs demonstrate that the proposed method successfully distinguishes recycled FPGAs from 35 fresh FPGAs. In contrast, a conventional recycled FPGA detection method results in certain misclassification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Device and Materials Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.