Abstract

Microorganisms such as Pseudomonas putida play important roles in the mineralization of organic wastes and toxic compounds. To comprehensively and accurately elucidate key processes of nicotine degradation in Pseudomonas putida, we measured differential protein abundance levels with MS-based spectral counting in P. putida S16 grown on nicotine or glycerol, a non-repressive carbon source. In silico analyses highlighted significant clustering of proteins involved in a functional pathway in nicotine degradation. The transcriptional regulation of differentially expressed genes was analyzed by using quantitative reverse transcription-PCR. We observed the following key results: (i) The proteomes, containing 1,292 observed proteins, provide a detailed view of enzymes involved in nicotine metabolism. These proteins could be assigned to the functional groups of transport, detoxification, and amino acid metabolism. There were significant differences in the cytosolic protein patterns of cells growing in a nicotine medium and those in a glycerol medium. (ii) The key step in the conversion of 3-succinoylpyridine to 6-hydroxy-3-succinoylpyridine was catalyzed by a multi-enzyme reaction consisting of a molybdopeterin binding oxidase (spmA), molybdopterin dehydrogenase (spmB), and a (2Fe-2S)-binding ferredoxin (spmC) with molybdenum molybdopterin cytosine dinucleotide as a cofactor. (iii) The gene of a novel nicotine oxidoreductase (nicA2) was cloned, and the recombinant protein was characterized. The proteins and functional pathway identified in the current study represent attractive targets for degradation of environmental toxic compounds.

Highlights

  • Strains belonging to Pseudomonas putida, a non-pathogenic member of the genus Pseudomonas, are able to metabolize a variety of organic material [1,2]

  • Pseudomonas putida are among the microorganisms that can utilize any of a variety of organic compounds as a sole carbon and nitrogen source

  • To better understand molecular pathways responding to nicotine, we studied the proteomes of P. putida S16 cultures with either nicotine or glycerol as the sole carbon source

Read more

Summary

Introduction

Strains belonging to Pseudomonas putida, a non-pathogenic member of the genus Pseudomonas, are able to metabolize a variety of organic material [1,2]. According to their metabolic and physiologic versatility, these strains are thought to play a pivotal role in the recycling of organic wastes in the environment, including soil, fresh water, and the plant rhizosphere [3]. P. putida S16 transforms DHP through the intermediates, N-formylmaleamic acid, maleamic acid and maleic acid, to fumaric acid in later steps of the nicotine degradation pathway (Figure 1). There is, a need to identify other proteins and pathways capable of degrading nicotine that are not evident from homology modeling, and it should be possible to use a proteomic approach to search for proteins involved in regulatory and molecular mechanisms involving nicotine catabolism

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call