Abstract

Computational simulations of engine combustion processes are increasingly relied upon to lead the design of advanced IC engines. Both computational fluid dynamics (CFD) simulations as well as thermodynamics-based phenomenological 0D or 1D gas dynamics simulations are examples of current simulation strategies. Before simulations can be utilized to guide the design process, they must be validated with experimental results. Typically, the experimental data used for validation of computational simulations include in-cylinder pressure and apparent heat release rate (AHRR) histories. However, the process of comparison of experimental and simulated pressure and AHRR curves is largely qualitative; therefore, the validation process is mostly visual. In the present work, the authors introduce a framework for quantifying uncertainties in experimental pressure data, as well as uncertainties in the “average” AHRR curve that is derived from ensemble-averaged cylinder pressure histories. Predicted AHRR curves from CFD simulations are also quantitatively compared with the experimental AHRR bounded by “uncertainty bands” in the present work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.