Abstract
We performed predictive hybrid-DFT computations for PbTiO3, BaTiO3, SrTiO3, PbZrO3 and SrZrO3 (001) surfaces, as well as their BaTiO3/SrTiO3, PbTiO3/SrTiO3 and PbZrO3/SrZrO3 (001) heterostructures. According to our hybrid-DFT computations for BO2 and AO-terminated ABO3 solid (001) surfaces, in most cases, the upper layer ions relax inwards, whereas the second layer ions shift upwards. Our hybrid-DFT computed surface rumpling s for the BO2-terminated ABO3 perovskite (001) surfaces almost always is positive and is in a fair agreement with the available LEED and RHEED experiments. Computed B-O atom chemical bond population values in the ABO3 perovskite bulk are enhanced on its BO2-terminated (001) surfaces. Computed surface energies for BO2 and AO-terminated ABO3 perovskite (001) surfaces are comparable; thus, both (001) surface terminations may co-exist. Our computed ABO3 perovskite bulk Γ-Γ band gaps are in fair agreement with available experimental data. BO2 and AO-terminated (001) surface Γ-Γ band gaps are always reduced with regard to the respective bulk band gaps. For our computed BTO/STO and PTO/STO (001) interfaces, the average augmented upper-layer atom relaxation magnitudes increased by the number of augmented BTO or PTO (001) layers and always were stronger for TiO2-terminated than for BaO or PbO-terminated upper layers. Our B3PW concluded that BTO/STO, as well as SZO/PZO (001) interface Γ-Γ band gaps, very strongly depends on the upper augmented layer BO2 or AO-termination but considerably less so on the number of augmented (001) layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.