Abstract
We find that the current radiative energy loss kernels obtained from the opacity expansion dramatically violate the collinear approximation used in their derivation. By keeping only the lowest order in collinearity terms, models based on the opacity expansion have ~50% systematic uncertainty in the calculation of pi^0 R_AA in 0-5% most central RHIC collisions resulting in a systematic uncertainty of ~200% in the extracted medium density. Surprisingly, the inclusion of a thermal gluon mass on the order of the Debye screening scale affects R_AA at only about the 5% level due to non-intuitive coherence effects. For some observables such as R_AA, the effect of these uncertainties decreases with increasing jet energy; for others, such as the average number of radiated gluons, the effect is energy independent. We note that it is likely that the differences reported in the extracted values of medium parameters such as qhat by various jet energy loss models will fall within this collinear approximation systematic uncertainty; it is imperative for the quantitative extraction of medium parameters or the possible falsification of the hypothesis of weak coupling between the hard probes and soft modes of the quark gluon plasma medium that future radiative energy loss research push beyond the lowest order collinear approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.