Abstract

Inexperiment, Song et al. have successfully synthesizedtwo novel molecules BtyC-1 and BtyC-2 and observedasingle and dual fluorescence peaks in these two molecules respectively. (Song et al. Tetrahedron Lett. 2019, 60, 1696–1701) However, they still lack a detailed and reasonable theoretical explanation. Then we wonder why these two similar structures behave so much differently? In this work, we focus on explaining the photochemical and photophysical properties of BtyC-1 and BtyC-2 by studying the excited state intramolecular proton transfer (ESIPT) mechanisms. Based on the optimized geometric configurations, the calculated infrared spectra indicate the intramolecular hydrogen bonding interactions are heightened in their excited states. The frontier molecular orbitals reflect the charge redistribution in photoinduced process, which explains that the driving force of ESIPT process is provided by enhanced hydrogen bonding interactions. In the meantime, the calculations of potential energy curves vividly explain the principle of the experimental dual fluorescence phenomenon. The analysis of Mulliken charges deepens the discussion of molecular structures on the potential energy barriers. Calculated absorption spectra via using density functional theory and emission spectra via using time-dependent density functional theory are consistent with the experimental data, which confirms the correctness of our calculation methods. The reduced density gradient isosurfaces help us distinguish the complex non-covalent bonds. Base on the above analyses, we conclude that there is no stable structure for BtyC-1 in excited state, which make it occur the ESIPT reaction spontaneously. BtyC-2 exists a stable normal structure in excited state. Its dual fluorescence signals are emitted by its normal and isomer structures, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call