Abstract

We have investigated the fluorine-doping dependence of lattice constants, transports and specific heat for polycrystalline LaFePO1-xFx. F doping slightly and monotonically decreases the in-plane lattice parameter. In the normal state, electrical resistivity at low temperature is proportional to the square of temperature and the electronic specific heat coefficient has large value, indicating the existence of moderate electron-electron correlation in this system. Hall coefficient has large magnitude, and shows large temperature dependence, indicating the low carrier density and multiple carriers in this system. Temperature dependence of the upper critical field suggests that the system is a two gap superconductor. The F-doping dependence of these properties in this system are very weak, while in the FeAs system (LaFeAsO), the F doping induces the large changes in electronic properties. This difference is probably due to the different F-doping dependence of the lattice in these two systems. It has been revealed that a pure effect of electron doping on electronic properties is very weak in this Fe pnictide compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.