Abstract
The gas-phase structures of a series of potassiated tertiary amino acids have been systematically investigated using infrared multiple photon dissociation (IRMPD) spectroscopy utilizing light generated by a free electron laser, ion mobility spectrometry (IMS), and computational modeling. The examined analytes comprise a set of five linear N,N-dimethyl amino acids derived from N,N-dimethyl glycine and three cyclic N-methyl amino acids including N-methyl proline. The number of methylene groups in either the alkyl chain of the linear members or in the ring of the cyclic members of the series is gradually varied. The spectra of the cyclic potassiated molecular ions are similar and well resolved, whereas the clear signals in the respective spectra of the linear analytes increasingly overlap with longer alkyl chains. Measured IRMPD spectra are compared to spectra calculated at the B3LYP/6-311++G(2d,2p) level of theory to identify the structures present in the experimental studies. On the basis of these experiments and calculations, all potassiated molecular ions of this series adopt salt bridge structures in the gas phase, involving bidentate coordination of the potassium cation to the carboxylate moiety. The assigned salt bridge structures are predicted to be the global minima on the potential energy surfaces. IMS cross-section measurements of the potassiated systems show a monotonic increase with growing system size, suggesting that the precursor ions adopt the same type of structure and comparisons between experimental and theoretical cross sections are consistent with salt bridge structures and the IRMPD results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.