Abstract

Self-assembling cyclic peptides (CP) consisting of amino acids with alternating d- and l-chirality form nanotubes by hydrogen bonding, hydrophobic interactions, and π-π stacking in solution. These highly dynamic materials are emerging as promising supramolecular systems for a wide range of biomedical applications. Herein, we discuss how varying the polymer conformation (linear vs. brush), as well as the number of polymer arms per peptide unimer affects the self-assembly of PEGylated cyclic peptides in different solvents, using small angle neutron scattering. Using the derived information, strong correlations were drawn between the size of the aggregates, solvent polarity, and its ability to compete for hydrogen bonding interactions between the peptide unimers. Using these data, it could be possible to engineer cyclic peptide nanotubes of a controlled length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call