Abstract

An enhanced time-domain simulation method of cutter/workpiece dynamic engagement during milling process is proposed in this article, which comprehensively considers the effect of multi-order modal characteristics of cutter system and cutter runout including offset and inclination. Based on the cutter dynamic displacement response, this article further presents the machined surface reconstruction algorithm and evaluation method for the form error. This research systematically studies and compares the calculation accuracy between the proposed method and other previous three kinds of methods. The effectiveness of the proposed method has been verified by a series of milling experiments successfully. By comparing with the other three methods, the proposed method shows a high calculation performance, especially under the milling condition with a large axial depth of cut and low damping or stiffness of cutter system. Besides, the results indicate that the form error has a strong dependence characteristic on the milling parameters, particularly on spindle speed. Additionally, cutter runout would easily cause over cut phenomenon on the machined surface and seriously deteriorate the surface roughness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call