Abstract

A systematic study of the isovector neutron-proton (np) pairing effect on the moment of inertia is performed at zero temperature. This study is based on a recently established expression obtained using the framework of the quantum perturbation theory and the Inglis cranking method, at the limit when the temperature is nil.We considered even–even proton-rich nuclei such as 30 ≤ Z ≤ 40 and N – Z = 0, 2, 4 using the single-particle energies and eigen-states of a deformed Woods-Saxon mean-field. The obtained results are compared to their homologues of the conventional BCS theory (i. e. when only the pairing between like-particles is considered).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.