Abstract

Bromine complexing agents (BCAs) are used to reduce the vapor pressure of bromine in the aqueous electrolytes of bromine flow batteries. BCAs bind hazardous, volatile bromine by forming a second, heavy liquid fused salt. The properties of BCAs in a strongly acidic bromine electrolyte are largely unexplored. A total of 38 different quaternary ammonium halides are investigated ex situ regarding their properties and applicability in bromine electrolytes as BCAs. The focus is on the development of safe and performant HBr/Br2/H2O electrolytes with a theoretical capacity of 180 Ah L−1 for hydrogen bromine redox flow batteries (H2/Br2-RFB). Stable liquid fused salts, moderate bromine complexation, large conductivities and large redox potentials in the aqueous phase of the electrolytes are investigated in order to determine the most applicable BCA for this kind of electrolyte. A detailed study on the properties of BCA cations in these parameters is provided for the first time, as well as for electrolyte mixtures at different states of charge of the electrolyte. 1-ethylpyridin-1-ium bromide [C2Py]Br is selected from 38 BCAs based on its properties as a BCA that should be focused on for application in electrolytes for H2/Br2-RFB in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.