Abstract
Alpha-decay half-lives of the even–even superheavy isotopes with proton numbers [Formula: see text] have been calculated within the cluster model. The alpha-daughter potential was constructed by employing the density-dependent double-folding model with a realistic nucleon–nucleon interaction whose exchange part has a finite range approximation. The half-lives were calculated using Wentzel–Kramers–Brillouin (WKB) approximation with the alpha preformation factor. The results have shown that the computed alpha-decay half-lives were in good agreement with their counterpart calculated by different semi-empirical approaches. The obtained results have also shown a negative linear relationship between the logarithm of the preformation factor and the fragmentation potential for the understudy isotopes. Also, the calculated results have shown that isotopes [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] had longer half-lives than their adjacent isotopes, which indicates that the corresponding neutron or proton numbers have a magical or semi-magical properties. Furthermore, we have studied the competition between alpha-decay and spontaneous fission to predict possible decay modes from the even–even isotopes [Formula: see text]. The results revealed that the isotopes [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] had alpha-decay as a predominant mode of decay and the nuclei [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] could not survive from the spontaneous fission. We hope that the theoretical prediction could be helpful for future investigation in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.