Abstract

Tetramethrin is a widely applied type I chiral pyrethroid insecticide that exists as a mixture of four isomers. In the present study, its stereoselective cytotoxicity, bioaccumulation, degradation, and metabolism were investigated for the first time at the enantiomeric level in detail by using a sensitive chiral high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) method. Results showed that among rac-tetramethrin and its four enantiomers, the trans (+)-1R,3R-tetramethrin had the strongest inhibition effect on the PC12 cells. In the earthworm exposure trial, the concentration of trans (-)-1S,3S-tetramethrin was 0.94-8.92 times in earthworms (cultivated in natural soil) and 1.67-5.01 times (cultivated in artificial soil) higher than trans (+)-1R,3R-tetramethrin, respectively. In the greenhouse experiment, the trans (+)-1R,3R-tetramethrin and cis (+)-1R,3S-tetramethrin were preferentially degraded. Furthermore, for rat liver microsome in vitro incubation, the maximum metabolism rate of cis (-)-1S,3R-tetramethrin was 1.50 times higher than its antipodes. Altogether, the aim of this study was to provide a scientific and reasonable reference for the possibility of developing a single enantiomer to replace the application of rac-tetramethrin, which could possess better bioactivity and lower ecotoxicity, and thus permit more reliable and accurate environmental monitoring and risk assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call