Abstract

Masticatory movements are studied for decades in odontology; a better understanding of them could improve dental treatments. The aim of this study was to describe an innovative, accurate, and systematic method of analyzing masticatory cycles, generating comparable quantitative data. The masticatory cycles of 5 volunteers (Class I, 19 ± 1.7 years) without articular or dental occlusion problems were evaluated using 3D electromagnetic articulography supported by MATLAB software. The method allows the trajectory morphology of the set of chewing cycles to be analyzed from different views and angles. It was also possible to individualize the trajectory of each cycle providing accurate quantitative data, such as number of cycles, cycle areas in frontal view, and the ratio between each cycle area and the frontal mandibular border movement area. There was a moderate negative correlation (−0.61) between the area and the number of cycles: the greater the cycle area, the smaller the number of repetitions. Finally it was possible to evaluate the area of the cycles through time, which did not reveal a standardized behavior. The proposed method provided reproducible, intelligible, and accurate quantitative and graphical data, suggesting that it is promising and may be applied in different clinical situations and treatments.

Highlights

  • IntroductionChewing is one of the first and major steps in the digestive process of most mammals; it is characterized by a complex motor-sensory activity that consists of rhythmic opening and closing of the jaw to reduce, grind, and moisten the food, leading to the formation of a bolus that can be swallowed

  • The evolution of the human species, as expressed in increased body and brain size, is closely related to increased nutritional energy intake, achieved by improvements in the masticatory function and changes in food storage and preparation [1].Chewing is one of the first and major steps in the digestive process of most mammals; it is characterized by a complex motor-sensory activity that consists of rhythmic opening and closing of the jaw to reduce, grind, and moisten the food, leading to the formation of a bolus that can be swallowed

  • The methodology proposed in this study used the AG 501 Electromagnetic articulography (EMA) and scripts especially developed in MATLAB to analyze the masticatory cycles of young subjects, Class I normoocclusion

Read more

Summary

Introduction

Chewing is one of the first and major steps in the digestive process of most mammals; it is characterized by a complex motor-sensory activity that consists of rhythmic opening and closing of the jaw to reduce, grind, and moisten the food, leading to the formation of a bolus that can be swallowed. Since this process is followed by digestion, it is an important factor for nutrition maintenance and feeding behavior [2,3,4,5,6,7,8]. Many people present a preferred chewing side [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call