Abstract

Protein structure determination by NMR has predominantly relied on simulated annealing-based conformational search for a converged fold using primarily distance constraints, including constraints derived from nuclear Overhauser effects, paramagnetic relaxation enhancement, and cysteine crosslinkings. Although there is no guarantee that the converged fold represents the global minimum of the conformational space, it is generally accepted that good convergence is synonymous to the global minimum. Here, we show such a criterion breaks down in the presence of large numbers of ambiguous constraints from NMR experiments on homo-oligomeric protein complexes. A systematic evaluation of the conformational solutions that satisfy the NMR constraints of a trimeric membrane protein, DAGK, reveals 9 distinct folds, including the reported NMR and crystal structures. This result highlights the fundamental limitation of global fold determination for homo-oligomeric proteins using ambiguous distance constraints and provides a systematic solution for exhaustive enumeration of all satisfying solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.