Abstract

Abstract. The tridentate pedicellariae in all species of Diadema and Echinothrix recognized by Mortensen, plus species described later (to include D. palmeri and two color morphs of E. calamaris) were examined to identify diagnostic species characters, and to determine whether such characters are useful in inferring phylogenetic relationships between species. Nineteen morphological characters were measured and analyzed, and species‐specific characters were identified. The morphometric data were then transformed using gap coding and a parsimony analysis was undertaken. The resulting cladogram for the tridentate pedicellariae present in species of Diadema was compared with the mitochondrial DNA phylogeny of Lessios et al., with a good level of congruence observed. Very narrow forceps‐like tridentate pedicellariae were found to be basal among Recent species, present only in D. setosum and D. palmeri. Members of D. palmeri were found to be unique within the genus, having both the forceps‐like form and a broad form of tridentate pedicellaria. The very narrow forceps‐like form is absent in all subsequent divergent species, while the broad form of tridentate pedicellaria in D. palmeri is basal to the broad forms in D. antillarum, D. mexicanum, D. paucispinum, and both the broad and narrow forms of tridentate pedicellaria of D. savignyi. The greatest similarity was found between the broad forms of tridentate pedicellaria in D. antillarum and D. mexicanum. These species were also found to have narrow forms of tridentate pedicellaria that showed a reasonable level of association to one another and to the rostrate form in D. ascensionis. Since the work of Mortensen, D. ascensionis has been shown, using mitochondrial DNA, to be nested within D. antillarum. The results of this study show that the tridentate pedicellaria in D. ascensionis are distinctly different from all other forms within the genus, to the extent that they belong to a rostrate subclass. This indicates that, among Diadema species, the tridentate pedicellariae are one of the first morphological characters to diverge in genetically isolated populations. Unlike the tridentate pedicellariae in Diadema, the different forms of tridentate pedicellariae in E. calamaris and E. diadema showed a stronger association intraspecifically than between forms interspecifically. The small forms of tridentate pedicellaria of the white and brown color morphs in E. calamaris showed a high level of association, while the large forms showed only a moderate association, far lower than would be expected between color morphs of the same species. This suggests that they are either subspecies or recently diverged separate species. This study demonstrates the taxonomic value contained within the characters of the tridentate pedicellariae for both differentiating species (even subspecies) and inferring phylogenetic relationships between species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.