Abstract

We introduce a systematic approach to the shape optimization of compact, single-aperture MIMO antennas. Because the characteristic modes of a radiator represent its complete set of possible responses to an excitation, any port on the antenna must display the properties of a combination of one or more of these characteristic modes. By restricting our consideration to a class of symmetric antennas, the lowest order characteristic modes of a structure can be separated with practical decoupling networks, studied, and excited independently. We show that the quality factor of each characteristic mode effectively bounds the performance of any individual port excitation, and can be used to evaluate the fitness of the antenna for multiport excitation. Under this framework, we apply a genetic algorithm (GA) to synthesize low $Q$ MIMO antennas while minimizing conductor area. Feed locations are specified on the optimized shape based on the weighted excitation strength of the desired modes, and a two-port MIMO antenna is implemented and measured, verifying the proposed theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.