Abstract

A statistically significant association between a silent mutation (102T/C) in the serotonin-2A (5-HT2A) receptor gene and schizophrenia has recently been reported in a sample of Japanese patients and healthy controls. This finding suggests that genetic predisposition to schizophrenia may be affected by a functional 5-HT2A receptor variant that is in linkage disequilibrium with 102T/C. In the present study, we have sought to identify genetic variation in the 5-HT2A receptor gene by screening genomic DNA samples from 91 unrelated subjects comprising 45 patients with schizophrenia and 46 healthy controls by using single-strand conformation analysis. We have identified four nucleotide sequence variants. Two sequence changes would result in protein alterations: a substitution of threonine by asparagine at position 25 (Thr25Asn), and a substitution of histidine by tyrosine at position 452 (His452Tyr). In order to test for a possible contribution to the development of schizophrenia, we have determined allele frequencies in extended samples of unrelated patients and healthy controls. The two amino acid substitutions are found with similar frequencies in patients and controls, indicating that the presence of these variants is not causally related to the development of schizophrenia. However, the reported association of the non-coding polymorphism 102T/C with the disease has also been detected in our sample (P=0.041, odds ratio=1.28, 95% confidence interval 1.012-1.623).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.