Abstract

Introduction: Ocular manifestations in several neurological pathologies accentuate the strong relationship between the eye and the brain. Retinal alterations in particular can serve as surrogates for cerebral changes. Offering a “window to the brain,” the transparent eye enables non-invasive imaging of these changes in retinal structure and vasculature. Fractal dimension (FD) reflects the overall complexity of the retinal vasculature. Changes in FD could reflect subtle changes in the cerebral vasculature that correspond to preclinical stages of neurodegenerative diseases. In this review, the potential of this retinal vessel metric to serve as a biomarker in neurodegeneration and stroke will be explored.Methods: A literature search was conducted, following the PRISMA Statement 2009 criteria, in four large bibliographic databases (Pubmed, Embase, Web Of Science and Cochrane Library) up to 12 October 2019. Articles have been included based upon their relevance. Wherever possible, level of evidence (LOE) has been assessed by means of the Oxford Centre for Evidence-based Medicine Level of Evidence classification.Results: Twenty-one studies were included for qualitative synthesis. We performed a narrative synthesis and produced summary tables of findings of included papers because methodological heterogeneity precluded a meta-analysis. A significant association was found between decreased FD and neurodegenerative disease, mainly addressing cognitive impairment (CI) and dementia. In acute, subacute as well as chronic settings, decreased FD seems to be associated with stroke. Differences in FD between subtypes of ischemic stroke remain unclear.Conclusions: This review provides a summary of the scientific literature regarding the association between retinal FD and neurodegenerative disease and stroke. Central pathology is associated with a decreased FD, as a measure of microvascular network complexity. As retinal FD reflects the global integrity of the cerebral microvasculature, it is an attractive parameter to explore. Despite obvious concerns, mainly due to a lack of methodological standardization, retinal FD remains a promising non-invasive and low-cost diagnostic biomarker for neurodegenerative and cerebrovascular disease. Before FD can be implemented in clinic as a diagnostic biomarker, the research community should strive for uniformization and standardization.

Highlights

  • Ocular manifestations in several neurological pathologies accentuate the strong relationship between the eye and the brain

  • At the end of the selection process, 13 case-control studies, seven cohort studies and one case series were included in the systematic review

  • The only case series included in this review studied retinal microvascular complexity in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and the authors concluded that vascular complexity was decreased but they failed to reveal a correlation with disease duration or lesion volume on magnetic resonance imaging (Cavallari et al, 2011)

Read more

Summary

Introduction

Ocular manifestations in several neurological pathologies accentuate the strong relationship between the eye and the brain. The retinal vascular tree holds more information than these focal measurements, and advances in retinal imaging and (semi-)automated image processing and analysis rose scientific interest in the association between retinal vessel metrics such as the fractal dimension (FD), tortuosity and branching of the retinal vascular network and neurodegenerative and cerebrovascular disorders. These retinal vascular network parameters quantify global vessel network characteristics, reflecting the integrity of the cerebral microcirculation (Cheung et al, 2015)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call