Abstract

Safeguarding crop productivity by protecting crops from pest attacks entails the wide use of plant protection products that provide a quick, easy and cheap solution. The objective of this study is to understand the effects of insecticides used in agriculture on non-target butterflies, specifically on the families Lycaenidae, Nymphalidae, Hesperiidae and Papilionidae. To achieve this goal, a formal systematic review was performed according to European Food Safety Authority (EFSA) guidelines, by entering a combination of keywords on 3 online databases. Three reviewers independently extracted information on study characteristics and quality. The main results were collected and grouped by the insecticide used, butterflies species and family, and endpoints. The output was valuable but heterogeneous as the endpoints and methodologies of the studies reviewed were different. Few experimental studies on the effects of insecticides on the most common butterfly families have been published. Naled and permethrin are the most commonly used insecticides in the experiments, whilst the target organisms of these studies are Vanessa cardui, Danaus plexippus, Heliconius charitonius, belonging to the Nymphalidae family, and Eumaeus atala, belonging to the Lycaenidae family; the effects were evaluated on all developmental stages, with special attention to the larval phase. This systematic review highlights the need for more studies on the effects of chemical insecticides on non-target Lepidoptera in light of their ecological importance and the extensive use of these chemical products.

Highlights

  • Agriculture is the most common form of land use in Europe

  • The objective of this study was to follow European Food Safety Authority (EFSA) guidelines (EFSA, 2010) in order to carry out a systematic review of published studies to gauge the extent of current knowledge regarding the effects of agricultural insecticide use on non-target butterflies

  • Despite the billions of dollars spent on insecticides and the known importance of Lepidoptera, it has been impossible to determine which species is the most sensitive or which insecticide is the most toxic toward the studied species, given the small number of published studies, different methodological approaches and different endpoints examined

Read more

Summary

Introduction

Agriculture is the most common form of land use in Europe. Modern agricultural lands are often subject to intensified use, characterized by increased field sizes, decreased crop diversity and reduced availability of semi-natural habitats. They are subject to high inputs of agrochemicals, mainly Plant Protection Products (PPPs) (Hahn et al, 2015), used to safeguard agricultural production from pests (Sciarra et al, 2015). Agricultural producers apply approximately 3 million tons of pesticides per annum, worth around USD 40 billion (Popp et al, 2012); insecticide use reached 12.2 billion in 2015, and the market is projected to reach more than16.4 billion by 2019 (AAVV, 2015). Insecticides are widely used to control insect pests, but a number of concerns have arisen regarding their environmental safety.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call