Abstract

Advances in immersive virtual reality (I-VR) technology have allowed for the development of I-VR learning environments (I-VRLEs) with increasing fidelity. When coupled with a sufficiently advanced computer tutor agent, such environments can facilitate asynchronous and self-regulated approaches to learning procedural skills in industrial settings. In this study, we performed a systematic review of published solutions involving the use of an intelligent tutoring system (ITS) to support hard skills training in an I-VRLE. For the seven solutions that qualified for the final analysis, we identified the learning context, the implemented system, as well as the perceptual, cognitive, and guidance features of the utilized tutoring agent. Generally, the I-VRLEs emulated realistic work environments or equipment. The solutions featured either embodied or embedded tutor agents. The agents’ perception was primarily based on either learner actions or learner progress. The agents’ guidance actions varied among the solutions, ranging from simple procedural hints to event interjections. Several agents were capable of answering certain specific questions. The cognition of the majority of agents represented variations on branched programming. A central limitation of all the solutions was that none of the reports detailed empirical studies conducted to compare the effectiveness of the developed training and tutoring solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.