Abstract
At the beginning of the COVID-19 pandemic, there was significant hype about the potential impact of artificial intelligence (AI) tools in combatting COVID-19 on diagnosis, prognosis, or surveillance. However, AI tools have not yet been widely successful. One of the key reason is the COVID-19 pandemic has demanded faster real-time development of AI-driven clinical and health support tools, including rapid data collection, algorithm development, validation, and deployment. However, there was not enough time for proper data quality control. Learning from the hard lessons in COVID-19, we summarize the important health data quality challenges during COVID-19 pandemic such as lack of data standardization, missing data, tabulation errors, and noise and artifact. Then we conduct a systematic investigation of computational methods that address these issues, including emerging novel advanced AI data quality control methods that achieve better data quality outcomes and, in some cases, simplify or automate the data cleaning process. We hope this article can assist healthcare community to improve health data quality going forward with novel AI development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.