Abstract

The 2017 and 2018 Atlantic hurricane seasons poignantly illustrated the dangers tropical cyclones pose to US, Central American, and Caribbean coastlines. In particular, Hurricane Maria inflicted widespread damage, including catastrophic defoliation, to Puerto Rico, altering surface heat fluxes and possibly modifying precipitation patterns. This study assesses whether defoliation-driven changes to surface energy fluxes redistribute precipitation in the months following a powerful hurricane landfall. Remote sensing analyses of Maria-related vegetation reduction and recovery from Puerto Rico were adapted to the Georgia coastline. In this novel methodology, the resulting landscape evolution, characterized by an instantaneous vegetation reduction with a gradual recovery, was assimilated into the Weather Research and Forecasting model at a convection-allowing a 3-km grid spacing for the 1 June–1 August 2017 period. The experiment revealed that Maria-scale defoliation reduced precipitation by 14% during the month following landfall within a 50 × 50 km zone containing the hypothetical landfall location. A maximum deficit of 20.0% was reached 4 weeks after landfall. For June 2017, the modeled 14% deficit would have shifted the precipitation total from the 61st to the 47th percentile for years 1981–2016. Meanwhile, precipitation totals were unchanged on the domain scale. The near-landfall drying was also evident in three less-severe defoliation simulations, suggesting that systematic precipitation redistribution near the landfall location is possible following storms considerably weaker than Hurricane Maria. Analyses of the temperature and wind fields suggest that coastal kinematic flow is altered by the introduction of a thermally driven pressure gradient in the defoliated zone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call