Abstract

As an important and expensive natural sesquiterpene compound in grapefruit, the interest in (+)-nootkatone is stimulated by its strong grapefruit-like odor and physiological activities, which induce efforts for its microbial production. However, the low catalytic efficiency of the cytochrome P450-P450 reductase (HPO-CPR) system is the main challenge. We developed a high-throughput screening (HTS) method using the principle of the color reaction between carbonyl compounds and 2,4-dinitrophenylhydrazine (DNPH), which could rapidly screen the activity of candidate HPO mutants. After optimizing the pairing of HPO and CPR and through semirational design, the optimal mutant HPO_M18 with catalytic performance 2.54 times that of the initial was obtained. An encouraging (+)-nootkatone titer of 2.39 g/L was achieved through two-stage fed-batch fermentation after metabolic engineering and endoplasmic reticulum engineering, representing the highest titer reported to date. Our findings lay the foundation for the development of an economically viable bioprocess for (+)-nootkatone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.