Abstract

We present atmospheric parameters for 51 nearby FG dwarfs uniformly distributed over the -2.60 < [Fe/H] < +0.20 metallicity range that is suitable for the Galactic chemical evolution research. Lines of iron, Fe I and Fe II, were used to derive a homogeneous set of effective temperatures, surface gravities, iron abundances, and microturbulence velocities. We used high-resolution (R>60000) Shane/Hamilton and CFHT/ESPaDOnS observed spectra and non-local thermodynamic equilibrium (NLTE) line formation for Fe I and Fe II in the classical 1D model atmospheres. The spectroscopic method was tested with the 20 benchmark stars, for which there are multiple measurements of the infrared flux method (IRFM) Teff and their Hipparcos parallax error is < 10%. We found NLTE abundances from lines of Fe I and Fe II to be consistent within 0.06 dex for every benchmark star, when applying a scaling factor of S_H = 0.5 to the Drawinian rates of inelastic Fe+H collisions. The obtained atmospheric parameters were checked for each program star by comparing its position in the log g-Teff plane with the theoretical evolutionary track in the Yi et al. (2004) grid. Our final effective temperatures lie in between the T_IRFM scales of Alonso et al. (1996) and Casagrande et al. (2011), with a mean difference of +46 K and -51 K, respectively. NLTE leads to higher surface gravity compared with that for LTE. The shift in log g is smaller than 0.1 dex for stars with either [Fe/H] > -0.75, or Teff < 5750 K, or log g > 4.20. NLTE analysis is crucial for the VMP turn-off and subgiant stars, for which the shift in log g between NLTE and LTE can be up to 0.5 dex. The obtained atmospheric parameters will be used in the forthcoming papers to determine NLTE abundances of important astrophysical elements from lithium to europium and to improve observational constraints on the chemo-dynamical models of the Galaxy evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.