Abstract

The pyrBI attenuator of Escherichia coli is an intrinsic transcription terminator composed of DNA with a hyphenated dyad symmetry and an adjacent 8 bp T:A tract (T-tract). These elements specify a G+C-rich terminator hairpin followed by a run of eight uridine residues (U-tract) in the RNA transcript. In this study, we examined the effects on in vivo transcription termination of systematic base substitutions in the T/U-tract of the pyrBI attenuator. We found that these substitutions diminished transcription termination efficiency to varying extents, depending on the nature and position of the substitution. In general, substitutions closer to the dyad symmetry/terminator hairpin exhibited the most significant effects. Additionally, we examined the effects on in vivo transcription termination of mutations that insert from 1 to 4 bases between the terminator hairpin and U-tract specified by the pyrBI attenuator. Our results show an inverse relationship between termination efficiency and the number of bases inserted. The effects of the substitution and insertion mutations on termination efficiency at the pyrBI attenuator were also measured in vitro, which corroborated the in vivo results. Our results are discussed in terms of the current models for intrinsic transcription termination and estimating termination efficiencies at intrinsic terminators of other bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call