Abstract

Systematic multiplex reverse transcription-polymerase chain reaction (SM RT-PCR) is distinguishable from other multiplex RT-PCR methods by (i) utilization of primers that amplify sequences that fall within a single exon of the genes, (ii) utilization of genomic DNA as a calibration standard, and (iii) optimized PCR conditions that allow amplification of bands of similar intensity using genomic DNA template. We previously developed the human experimental systems of 68 glycosyltransferase genes, 39 Hox genes, and 26 integrin subunit genes, and analyzed the expression of those genes in human adult tissues. Here we report the establishment of an SM RT-PCR system of proto-oncogenes and tumor suppressor genes and the analysis of gene expression in human cancer tissues and cell lines. We also demonstrate that the SM RT-PCR system, which was developed for cDNA expression analysis, could also be used successfully for more exquisite analysis of copy number changes in genomic DNA. We observed a decrease in band intensity of HRAS, TP73, CDKN2A, and CDKN2B genes in most of the breast and prostate cancer cell lines examined. The decrease in copy number of HRAS proto-oncogene leads us to suspect the presence of tumor suppressor genes in the vicinity of this gene on chromosome 11p15.5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call