Abstract

The main intent of this paper is to represent a systematic algorithm capable of deriving the equations of motion of N-flexible link manipulators with revolute–prismatic joints. The existence of the prismatic joints together with the revolute ones makes the derivation of governing equations difficult. Also, the variations of the flexible parts of the links, with respect to time cause the associated mode shapes of the links to vary instantaneously. So, to derive the kinematic and dynamic equations of motion for such a complex system, the recursive Gibbs-Appell formulation is applied. For a comprehensive and accurate modeling of the system, the coupling effects due to the simultaneous rotating and reciprocating motions of the flexible arms as well as the dynamic interactions between large movements and small deflections are also included. In this study, the links are modeled based on the Euler–Bernoulli beam theory and the assumed mode method. Also, the effects of gravity as well as the longitudinal, transversal and torsional vibrations have been considered in the formulations. Moreover, a recursive algorithm based on 3 × 3 rotational matrices has been applied in order to derive the system’s dynamic equations of motion, symbolically and systematically. Finally, a numerical simulation has been performed by means of a developed computer program in order to demonstrate the ability of this algorithm in deriving and solving the equations of motion related to such systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call