Abstract
This study utilizes Quokka3, an advanced solar cell simulation program, specifically tailored for interdigitated back‐contact (IBC) crystalline silicon (c‐Si) solar cells. Through meticulous Quokka3 simulations, the influence of several geometric and wafer characteristics of the solar cell backside on current–voltage (I–V) performance has been scientifically explored for IBC c‐Si solar cells. The investigation encompasses parameters such as wafer thickness, bulk lifetime, resistivity, emitter and back surface field area fraction, and front‐ and rear‐surface passivation. Optimal values for these parameters have been proposed to enhance the efficiency of IBC solar cells. These recommendations contain an emitter percentage of 70%, a wafer thickness ranging from 200 μm, a wafer resistivity of 1 Ω cm, and a wafer bulk lifetime of at least 10 ms. Moreover, under conditions where the cell is not short‐circuited, the potential for achieving higher cell efficiency, up to 26.64%, has been shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.