Abstract

Additive manufacturing has been presented as a novel and competitive method to achieve unprecedented part shapes and material complexities. Though this holds true in niche markets, the economic viability of additive manufacturing for large-scale industrial production is still in question. Companies often struggle to justify their investment in additive manufacturing due to challenges in the integration of such technologies into mainstream production. First, most additive technologies exhibit a relatively low production rate when compared with traditional production processes. Second, there is a lack of robust design for additive manufacturing methods and tools that enable the leveraging of the attendant unique capabilities, including the ability to form organic part geometries and automated part consolidations. Third, there is a dearth of systematic part screening methods to evaluate manufacturability in additive manufacturing. To tackle the challenge of manufacturability evaluation, the present work proposes a novel approach derived from latent semantic analysis and dimensional analysis to evaluate parts and their production for a variety of selected metrics. The selected metrics serve as descriptors of design features and manufacturing functions, which are developed using functional modeling and dimensional analysis theory. Singular-value decomposition and Euclidean distance measurement techniques are used to determine the relative manufacturability for a set of parts for a specified manufacturing process technology. The utility of the method is demonstrated for laser powder bed fusion technology. While demonstrated for additive manufacturing here, the developed approach can be expanded for any given set of manufacturing processes. Expansion of this systemic manufacturability analysis method can support part design decision-making, process selection, and design and manufacturing optimization.

Highlights

  • Additive manufacturing (AM) is presented in literature as a strong competitor of traditional manufacturing methods [1]

  • This research presents a novel and systematic framework based on functional modeling and dimensional analysis theory for the development of parsimonious metrics as descriptors of functions

  • The developed metrics are utilized in a mathematical mechanism for evaluating part manufacturability using singular value decomposition

Read more

Summary

Introduction

Additive manufacturing (AM) is presented in literature as a strong competitor of traditional manufacturing methods [1]. Over the past several decades, the utility of DSS has improved, and, with manufacturing moving towards more automated processes, solutions have been developed leading to intelligent decision support systems (IDSS) and cyber-physical production systems (CPPS). The available literature categorizes DSS into five types, namely, model-driven, data-driven, knowledge-driven, document-driven, and communicationdriven systems [5] In this current research, a combination of model-driven, data-driven, and knowledge-driven approaches is used to evaluate part manufacturability. Knowledge-based DSS methods of today (e.g., fuzzy logic, Bayesian networks, and genetic algorithms) have evolved from their predecessors, known as rulebased expert systems. Such rule-based expert systems use heuristics to solve problems with the help of human expert knowledge stored in databases. In the age of big data, the challenges pertaining to the properties of data (i.e., volume, variety, velocity, veracity, validity, and value) need to be addressed to improve the process of decision-making [12,13,14,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.