Abstract

In Chapter 14 of Atomic and Molecular Processes, Bates (1962) outlines a procedure for calculating ion-atom cross sections in the plane-wave Born approximation (pwBa). The procedure involves integration over the product of elastic scattering factors or generalized oscillator strengths for excitation or ionization from both projectile and target. We have programmed this procedure to use our large database of excitation and ionization generalized oscillator strengths (GOS). The program calculates both cross sections (CS) and stopping power (SP) on a subshell basis. The calculations are done in the center of mass system where the distinction between projectile and target is lost. Thus, the SP in the laboratory frames of both target and projectile are symmetrical in nuclear and net charges. The traditional simple modeling of SP, using scaled proton SP and an effective projectile charge, is unsymmetrical, and therefore dubious as a guide for extrapolating to ion-ion SP. At high projectile energy, the SP curves, as a function of increasing projectile charge, approach the scaled protonic result from above, indicating that lowering the average charge raises the SP, in contradiction to the traditional picture that the projectile SP increases with increasing effective charge (assuming there is an underlying physical reality relating the effective and average charge). Comparison with experimental SP data (mostly from 30 years ago) shows generally poor agreement for Li ion projectiles in the 1–10 MeV range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call