Abstract
Lactate, primarily produced by the gut microbiota, performs as a necessary “information transmission carrier” between the gut and the microbiota. To investigate the role of lactate in the gut epithelium cell–microbiota interactions as a metabolic signal, we performed a combinatory, global, and unbiased analysis of metabolomic and transcriptional profiling in human colon epithelial cells (Caco-2), using a lactate treatment at the physiological concentration (8 mM). The data demonstrated that most of the genes in oxidative phosphorylation were significantly downregulated in the Caco-2 cells due to lactate treatment. Consistently, the levels of fumarate, adenosine triphosphate (ATP), and creatine significantly decreased, and these are the metabolic markers of OXPHOS inhibition by mitochondria dysfunction. The one-carbon metabolism was affected and the polyol pathway was activated at the levels of gene expression and metabolic alternation. In addition, lactate significantly upregulated the expressions of genes related to self-protection against apoptosis. In conclusion, lactate participates in gut–gut microbiota communications by remodeling the metabolomic and transcriptional signatures, especially for the regulation of mitochondrial function. This work contributes comprehensive information to disclose the molecular mechanisms of lactate-mediated functions in human colon epithelial cells that can help us understand how the microbiota communicates with the intestines through the signaling molecule, lactate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.