Abstract

In the Brookhart type α-diimine palladium catalyst system, it is highly challenging to tune the polymer branching densities through ligand modifications or polymerization conditions. In this contribution, we describe the synthesis and characterization of a series of α-diimine ligands and the corresponding palladium catalysts bearing both the dibenzhydryl moiety and with systematically varied ligand sterics. In ethylene polymerization, it is possible to tune the catalytic activities ((0.77–8.85) × 105 g/(mol Pd·h)), polymer molecular weights (Mn: (0.2–164.7) × 104), branching densities (25–116/1000C), and polymer melting temperatures (amorphous to 98 °C) over a very wide range. In ethylene–methyl acrylate (E–MA) copolymerization, it is possible to tune the catalytic activities ((0.3–8.8) × 103 g/(mol Pd·h)), copolymer molecular weights (1.1 × 103–79.8 × 103), branching densities (30–119/1000C), and MA incorporation ratio (0.4–13.8%) over a very wide range. The molecular weights and branching densities could also be tuned in α-olefin polymerization. The tuning in polymer microstructures leads to significant tuning in polyethylene mechanical properties and the surface properties of the E–MA copolymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.