Abstract

To describe fusion hindrance observed in fusion reactions at extremely low incident energies, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Calculated fusion cross sections for the medium-heavy mass systems of $^{64}$Ni + $^{64}$Ni, $^{58}$Ni + $^{58}$Ni, and $^{58}$Ni + $^{54}$Fe, the medium-light mass systems of $^{40}$Ca + $^{40}$Ca, $^{48}$Ca + $^{48}$Ca, and $^{24}$Mg + $^{30}$Si, and the mass-asymmetric systems of $^{48}$Ca + $^{96}$Zr and $^{16}$O + $^{208}$Pb are consistent with the experimental data. The astrophysical S factor and logarithmic derivative representations of these are also in good agreement with the experimental data. Since the results calculated with the damping factor are in excellent agreement with the experimental data in all systems, I conclude that the smooth transition from the sudden to adiabatic processes occurs and that a coordinate-dependent coupling strength is responsible for the fusion hindrance. In all systems, the potential energies at the touching point $V_{\rm Touch}$ strongly correlate with the incident threshold energies for which the fusion hindrance starts to emerge, except for the medium-light mass systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.