Abstract

Background Ischemic stroke (IS) is a serious disease with a high rate of death and disability, and a growing number of people are becoming victims. Existing drugs not only have limited therapeutic effects but also have obvious side effects. Most importantly, drug resistance due to long-term or improper use of drugs is detrimental to patients. Therefore, it is urgent to find some alternative or supplementary medicines to alleviate the current embarrassment. Powerful Tianma Eucommia Capsule (PTEC) is mainly used to treat IS in China for thousands of years; however, the molecular mechanism is not clear. Methods Pharmacology ingredients and target genes were filtered and downloaded from websites. A pharmacology ingredient-target gene network was constructed to predict the molecular interactions between ingredients and target genes. Enrichment analysis was performed to explore the possible signal pathways. LeDock was used to simulate the interaction form between proteins and main active ingredients and to deduce key amino acid positions. Results Two hundred eighty-nine target genes and seventy-four pharmacological ingredients were obtained from public databases. Several key ingredients (quercetin, kaempferol, and stigmasterol) and primary core target genes (PTGS1, NCOA2, and PRSS1) were detected through ingredient-target gene network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that ingredients affect networks mainly in nuclear receptor activity and G protein-coupled amine receptor activity; besides, fluid shear stress and atherosclerosis, human cytomegalovirus infection, and hepatitis B signaling pathways might be the principal therapy ways. A series of presumed key amino acid sites (189ASP, 190SER, 192GLN, 57HIS, and 99TYE) were calculated in PRSS1. Six of the target genes were differentially expressed between male and female patients. Conclusions Seven new putative target genes (ACHE, ADRA1A, AR, CHRM3, F7, GABRA1, and PRSS1) were observed in this work. Based on the result of GO and KEGG analysis, this work will be helpful to further demonstrate the molecular mechanism of PTEC treatment of IS.

Highlights

  • Ischemic stroke (IS) is a severe disease due to insufficient blood supply or blockage of blood flow to certain parts of the brain

  • In a study of platelet resistance in juvenile patients with acute IS and its association with early neurological deterioration (END) and recurrent ischemic stroke (RIS), it was found that 24.4% of patients are aspirin resistant, 35.9% are clopidogrel resistant, and 19.2% are both aspirin and clopidogrel resistant [7, 8]

  • Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted and 120 pathways were filtered by p adjusted value: multiple cancers signaling pathways, fluid shear stress and atherosclerosis, TNF signaling pathway, VEGF signaling

Read more

Summary

Background

Ischemic stroke (IS) is a serious disease with a high rate of death and disability, and a growing number of people are becoming victims. Pharmacology ingredients and target genes were filtered and downloaded from websites. A pharmacology ingredient-target gene network was constructed to predict the molecular interactions between ingredients and target genes. Two hundred eighty-nine target genes and seventy-four pharmacological ingredients were obtained from public databases. Several key ingredients (quercetin, kaempferol, and stigmasterol) and primary core target genes (PTGS1, NCOA2, and PRSS1) were detected through ingredient-target gene network analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that ingredients affect networks mainly in nuclear receptor activity and G protein-coupled amine receptor activity; besides, fluid shear stress and atherosclerosis, human cytomegalovirus infection, and hepatitis B signaling pathways might be the principal therapy ways. Based on the result of GO and KEGG analysis, this work will be helpful to further demonstrate the molecular mechanism of PTEC treatment of IS

Introduction
Materials and Methods
Result
ESR2 ESR1 ERBB2
Findings
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call