Abstract

The ability of different quantum chemical methods to predict experimental electronic circular dichroism (CD) spectra is critically evaluated. Two single-reference, time-dependent approaches based either on density functional theory (TDDFT) or a simplified coupled-cluster expansion (CC2) and two multireference methods (MRMP2 and DFT/MRCI) are considered. The methods are applied to a test suite of seven molecules including a wide range of difficult chromophores (“real-life” examples) and to three model systemsH2S2, twisted ethylene, and dimethyloxiranewhere accurate ab initio MRCI reference data are used for comparison. To investigate the effect of “exact” exchange mixing systematically, the TDDFT calculations were carried out with the BP86, B3-LYP, and BH-LYP functionals. The time-dependent Hartree−Fock (TDHF) method was included as an “upper limit” for the HF-exchange part in the functional. In general, it is found that the accuracy of most of the simulated spectra (except those from TDHF) is good enough ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.