Abstract

The timeliness, precision, and low cost of search data have great potential for projecting tourist volume. Obtaining valuable information for decision-making, particularly for predicting, is hampered by the vast amount of search data. A systematic investigation of keyword selection and processing has been conducted. Using Beijing tourist volume as an example, 11 different feature extraction algorithms were selected and combined with long short-term memory (LSTM), random forest (RF) and fuzzy time series (FTS) for forecasting tourist volume. A total of 1612 keywords were retrieved from Baidu Index demand mapping using the direct word extraction method, range word extraction method and empirical selection method. The remaining 813 keywords were subjected to feature extraction. Based on the forecasting results of medium and short-term (1-day, 7-days and 10-days), the forecasting results of Kernel principal component analysis (KPCA) and locally linear embedding (LLE) are relatively stable when the dimensionality is reduced to 5 dimensions. The forecasting results of t-stochastic neighbor embedding (t-SNE), isometric mapping (IsoMap) and locally linear embedding (LLE), locality preserving projections (LPP), independent component correlation (ICA) are relatively stable when the dimensionality is reduced to 10 dimensions. Accurately forecasting many factors (transportation, attraction, food, lodging, travel, tips, tickets, and weather) provides a solid foundation for tourism demand optimization and scientific management and a resource for tourists' holistic vacation planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.