Abstract

Ten isoindigo-based polymers were synthesized, and their photophysical and electrochemical properties and device performances were systematically investigated. The HOMO levels of the polymers were tuned by introducing different donor units, yet all polymers exhibited p-type semiconducting properties. The hole mobilities of these polymers with centrosymmetric donor units exceeded 0.3 cm2 V–1 s–1, and the maximum reached 1.06 cm2 V–1 s–1. Because of their low-lying HOMO levels, these copolymers also showed good stability upon moisture. AFM and GIXD analyses revealed that polymers with different symmetry and backbone curvature were distinct in lamellar packing and crystallinity. DFT calculations were employed to help us propose the possible packing model. Based on these results, we propose a design strategy, called “molecular docking”, to understand the interpolymer π–π stacking. We also found that polymer symmetry and backbone curvature affect interchain “molecular docking” of isoindigo-based polymers in film, ultimately leading to different device performance. Finally, our design strategy maybe applicable to other reported systems, thus representing a new concept to design conjugated polymers for field-effect transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.