Abstract
We investigate the critical lines of polymer mixtures in the presence of their vapor phase at the mathematical double point, where two critical lines meet and exchange branches, and its environment. The model used combines the lattice gas model of Schouten, ten Seldam and Trappeniers with the Flory-Huggins theory. The critical line structure is displayed for various combinations of the chain length and system parameters in the pressure (P)-temperature (T) plane, as is usually done with experimental results. This type of work sheds light on the essential transition mechanism involved in the phase diagram's change of character, such as multi-critical points and mathematical double points, which are of great practical importance in supercritical fluid extraction processes. The P, T diagrams are discussed in accordance with the Scott and van Konynenburg binary phase diagram classification. We found that our P, T plots were in agreement with type II, type III, or type IV phase diagram behaviors. We also found that some of our phase diagrams represent the liquid-liquid equilibria in polymer solutions and mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.