Abstract

Systematic interrogation of correlative signaling components in their native environment is of great interest for dissecting sophisticated cellular signaling. However, it remains a challenge because of the lack of versatile and effective approaches. Herein, we propose a cell membrane-anchored DNA multitasking processor acting as a "traffic light" for integrated analyses of cellular signal transduction. Enhanced and controllable inhibition of c-Met signaling was achieved by membrane-anchoring of DNA processors. Moreover, the multitasking capability of the DNA processor allowed the monitoring of correlative VEGF secretion induced by c-Met activity regulation directly. By exploiting versatile aptameric nucleic acids, this modular designed DNA multitasking processor dissected how cell surface receptors coordinated with related components in live cells systematically. Therefore, it provides a powerful chemical tool for both fundamental cell biology research and precision medicine applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call